83 research outputs found

    Rapid evolution with generation overlap: the double-edged effect of dormancy

    Get PDF
    In life histories with generation overlap, selection that acts differently on different life-stages can produce reservoirs of genetic variation, for example, in long-lived iteroparous adults or long-lived dormant propagules. Such reservoirs provide “migration from the past” to the current population, and depending on the trend of environmental change, they have the potential either to slow adaptive evolution or accelerate it by re-introducing genotypes not affected by recent selection (e.g., through storage effect in a fluctuating environment). That is, the effect of generation overlap is a “double-edged sword,” with each edge cutting in a different direction. Here, we use sexual (quantitative trait) and asexual (clonal) models to explore the effects of generation overlap on adaptive evolution in a fluctuating environment, either with or without a trend in the mean environment state. Our analyses show that when environmental stochasticity scaled by strength of selection is intermediate and when the trend in mean environment is slow, intermediate values of generation overlap can maximize the rate of response to selection and minimize the adaptation lag between the trait mean and the environmental trend. Otherwise, increased generation overlap results in smaller selection response and larger adaptation lag. In the former case, low generation overlap results in low heritable trait variance, while high generation overlap increases the “migration load” from the past. Therefore, to understand the importance of rapid evolution and eco-evolutionary dynamics in the wild for organisms with overlapping generations, we need to understand the interaction of generation overlap, environmental stochasticity, and strength of selection

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
    • 

    corecore